ScaTE: A Scalable Framework for Self- Supervised Traversability Estimation in Unstructured Environments
نویسندگان
چکیده
For the safe and successful navigation of autonomous vehicles in unstructured environments, traversability terrain should vary based on driving capabilities vehicles. Actual experience can be utilized a self-supervised fashion to learn vehicle-specific traversability. However, existing methods for learning are not highly scalable various In this work, we introduce framework traversability, which directly from vehicle-terrain interaction without any human supervision. We train neural network that predicts proprioceptive vehicle would undergo 3D point clouds. Using novel PU method, simultaneously identifies non-traversable regions where estimations overconfident. With data gathered simulation real world, show our is capable By integrating with model predictive controller, demonstrate estimated results effective enables distinct maneuvers characteristics addition, experimental validate ability method identify avoid regions.
منابع مشابه
GONet: A Semi-Supervised Deep Learning Approach For Traversability Estimation
We present semi-supervised deep learning approaches for traversability estimation from fisheye images. Our method, GONet, and the proposed extensions leverage Generative Adversarial Networks (GANs) to effectively predict whether the area seen in the input image(s) is safe for a robot to traverse. These methods are trained with many positive images of traversable places, but just a small set of ...
متن کاملSupervised Traversability Learning for Robot Navigation
This work presents a machine learning method for terrain’s traversability classification. Stereo vision is used to provide the depth map of the scene. Then, a v-disparity image calculation and processing step extracts suitable features about the scene’s characteristics. The resulting data are used as input for the training of a support vector machine (SVM). The evaluation of the traversability ...
متن کاملa framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran
the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...
15 صفحه اولA Self-Supervised Framework for Clustering Ensemble
Clustering ensemble refers to combine a number of base clusterings for a particular data set into a consensus clustering solution. In this paper, we propose a novel self-supervised learning framework for clustering ensemble. Specifically, we treat the base clusterings as pseudo class labels and learn classifiers for each of them. By adding priors to the parameters of these classifiers, we captu...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE robotics and automation letters
سال: 2023
ISSN: ['2377-3766']
DOI: https://doi.org/10.1109/lra.2023.3234768